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Pre ’Tiction Intervals wit1~ the
*Dirichiet Prior

by

Gregory Cai’~nhell and !~vles Ilollangier

Let X1 , . .., X~ and Y1, .. ., Y~. “c consecutive sn~inles fron a Dirichiet

process on ~~~ (the real line 1, with the I~orel e-field ~
) wi th narameter

a. Typically, prediction intervals emnloy the nrevious observations X1,...

in order to nredict a specified function of the future sam~le Y1,...,Y,~.

}4ere one- and t~~-sided nrediction intervals ~or at least k of N future obser-

vations are develoiied for the situation in which, in addition to the previous

sample , there is prior information available. The information is si,ecified

via the parameter a of the Dirichlet process.

Key won.d6 : Prediction intervals~ Dirichlet process; J3ayesian nonparanetricV methods: Coverage pronerty .

1. IFrr!~D!YJcr ION

Let X1,.. •~ Xn be a random sarinle of size n from a distribution function

F. Let Y1,. ~~~ be a second random sample of size N from the same distri-

bution function F and let q(Y1,.. .,YN) be some function of these random vari-

ables. Then, if L1(X11...~X~) and L2(Xi~ • • •~
Xn) are statistics based on the

initial samnle,1L1,L21 is said to be a lOOy percent prediction interval for

g(Y1,...,Y~) if

Pr{L1(X1~...~X~) � g(Y~,...,Y14) < L2 (X1~ ...~X~)} v.

*Research sponsored by the Air Foce Office of Scientific T~esearch , AFSC, USAF ,
under Grants AFOSR-74-2581B and AFOS~-76-3lO9. The United States Governmentis authorized to reproduce and distribute reprints for governmental purposes.
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Parametric nrediction intervals have been considered by many authors,

includinr Proschan (1953), Cb ’~’.’ (1966), Tla}’n (1969. l~70~- ,

~7t) ’ 127W’). ~‘ilks (1942, 1962) introduced nonnarametric prediction inter-

vals For the case in which F is an unknown continuous distribution function

and one is interested in intervals to contain at least k of N future obser-

vations. Fligner and 1”olfe (1976) have anproached nonnarametric prediction

intervals via a sample analogue to the nrobahility integral transformation

and to a coverage property (see Section a) .  In narticular , they have reviewed

the results of “ilks~ developed additional prediction intervals , and gener-

alized prediction intervals to the case of an unknown discontinuous ~istri-

bution function . A Bayesian approach to nrediction intervals is nresented

in Guttman (1970).

This paper combines nonparametric and Bayesian anproaches to develop

intervals which allow the use of both nrior information and the data of the

initial sample , without requiring strong parametric assumntions. Our Rayesian

nonparametric prediction intervals are derived using Ferguson’s (1973) ~)irich-

let process prior on the space of distribution functions. The Dirichiet nro-

cess is introduced in Section 2. Section 3 nresents the construction of one-

sided Bayesian nonp araznetric prediction intervals for at least k of ‘~ future

observations. The possibility of a coverage nroperty for a sannle from a

Dirichlet process is investigated in Section 4. Section 4 also contains some

useful results concerning the distribution of the order statistics from a

Dirjchlet sample. The two-sided nredict ion interval problem with prior infor-

mation in the form of a ~irichlet nrocess prior is solved in Section 5. The

final section contains an examnie which illustrates the procedure of constrIctin~

Bayesian nonparanetric nrediction intervals, and discusses the imnlementation

of such prediction intervals.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. PRBLP4TN~RIES

Let Z1..  . ,Z~ be independent gam~ randczn variables with shane varaneters
k k

� 0 and scale parameter 1, i~i,. . . ,k . Define ~ Z ..  If } > 0,
:j— l ~ 1.1

then (Yl , . . . ,Yk) is said to have a 4.chte~t d t~2bu..Uon with narameter
(cIl,...,ak). If all the are strictly positive, the distribution of

is absolutely continuous with density

F(a1 +...+ at.) k-i ci.-l k-i ak-if(y1,. ‘~
‘k~ r (a

1
) . . . r (cc i~l 

Yi. ~ (1 ~~~~~ 1s (Y1 . . .

where S denotes the simplex y~ � 0 for i-i, . . . ,k- 1 and 
~ 
y~ � 1. The Dirichiet

i—i

distribution is also called the multi-beta, in that for k—2 , it reduces to the
V beta distribution .

The foll~ dng exriression for the r1, . . . ~~~~ mment of the distribution of

for £ � Ic and r1 a nonnegative integer , will be useful in the

sequel :

r r rCa +r )...r(u •r )r(a)
i .“ t 

) r(a1) . ..r (~~)r(a+r)

k
where a - ~ and r ~ r1. (For a nroof of this result and a more corniete

i— i i— i
treatment of the Dirichiet distribution see Wilks (1962) . For further back-

ground on the Dirichiet distribution and its generalizations, see, or examnle,
V Connor and l’bsimann (l%9) and Good (1965).) Let yn1~ denote the ascending

factorial y (y+l) . . . (y+k-l) with ~,1 O]~ Then the right -hand side of (2.1) V

Cr 1) Cr~l 
~~can be rewritten as a.~ . . .a~ Ia

The Dirichiet process on the real line can now be defi ned. Let a be a

nonnegative measure on the real line R with Borel a-field ‘~~. Then P is a

UL~ chL,.t p&oca~ on (R,R) with parameter a if, for every rt-l,2,..., and every
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measurable partition 31,...,B1 of “ , (l
~(Bi)~ •••~

P(Pr)) has a flirichiet dis-

tribution with parameter (c*(~ ) , . . .,a(R )). ThIS nrocess gives rise to a1 m

• nrohahilitv on the set of distribution fi~nctinnc , as shown in the lan’b~ark

paner of Ferpuson (1973) . ~v a sample from the process, it will  he understood

that a distribution function P is chosen by this nrobahj iity and tben a random
II

sample obtained from P• (See Fer~n~son (1973) and perk and ~avare (1977) for a

more riaorous mathematical trea~~ent.) The tractability of Perguson ’s an-

nroach lies in part in iollowin~ result (Theorem 1 of Ferc’uson , 1973) . The

t posterior distribution of the Dirichlet process P with nara neter a , c~iven a

samnle X1,.. •~ ,X fron P , is again a Pirichiet nrocess with as a narameter the
r

undated reasure a + !~rJ~e~~~ 6 is the measure t.~hich concentrates all
i=1 i

its mass of one at the noint z.

For the purposes of this naner, P is taken to he a ~andorn distribution

function from Ferguson’s Dirichiet process nrior. Given ~~, the first samnle

X1,..., X~ is a random samnle from P . The secon” samnie Y~ is then a

sa~1)l~ £ro’a the conditional ~irichlet nrocess , given ~~~~~~~~ °ne

wishes to predict a snecified function of the second samnle . In particular ,

several prediction intervals are obtained to contain at least q of the N

future observations .

3. (~4E-SIDr~D P~EDIC~TflN T’TrP.RVft.LS ~TIV V-’F flIPIC1-1Lfl~ P’~IOR

V In this section iCOy percent nrediction intervals of the form (x,ø’) are

found for at least q of ~ future observations . Let

R(x) = Pr fx < at least q of the N Y’ s < ~}. (3.1)

~Iote that R(x ) is decreasing in x. The nroblem is to find x0 such that

~~x0) = y , for then (x9 ,øo) is the desired interval .

V 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ .- .  • •  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Unlike the nonparametric prediction intervals of ‘~i1ks (1942, 1962)

and Fligner and ~1olfe (1976), it is possible, tisin~ the Dirichiet nrncess

prior, to form orediction intervals for the case of no initial samnle of

X ’s (i.e., n 0 ) . Call this nroblem the ~no data” nroblem. This nrohlem

V is first solved and then extended in a natural way to obtain the solution

of the “data” nroblem (n > 0).

For fixed x , let ~~~~~ and denote the random variables for the

number of Y’s that are less than, equal to , and greater than x , resnectively .

In the “no data r problem, 
~l ’’• • ’~N is merely a sarinle from a Dirichiet

• process with parameter a. For notational convenience, the subscrint x for

I ,J , and K is suppressed .

Theon.em 1: For 
~l ’••~ ’~N a sample fran a Dirichlet process with parameter a ,

Pr {(I ,J,K) = (i , j , k) }

. j , k~ 
a(-ø~,x) 1’1 a ({x1) 1

~
1 

a(x ,~ ) Ikh /a(e)~~
l
. 

(3.2)

~ribution function F given, a multinomial argument yields

Pr( (I ,J,K) = (i ,j , k) JF ) = (. ) F(x )~rr (x)~F(x ))3[l~F (x) 1k.(3.3)
- 

I 
Integration of both sides o~ (3.3) with resnect to the nrobability Q on the

set of distribution function gives

Pr( (I ,J,K) = (i ,i,~-)) ~j
T
k~ 

f F(x )’[P(x)_F(x~)]
)1l_F(x)11’c~

Da(F)•

Then, by definition of the Dirichiet process, (F(x ),F(x)-F(x ),l-P(x)) has a

Dirichiet distribution. Anplication of the i,j,k~i moment of this Dirichiet

distribution yields the right-hand-side of (3.2), completing the ~roof. I
The random variables 

~
11’ ••”k~ 

are said to have a Qk.c~chLet compound

muttLnomLaL distribution (see Johnson and Xotz, 1969, n. 309) with parameters
Ic

N,al,...,ak if , for non-negative integers 
~l’~~~’

1k such that ~ 
i . N ,

~~~~ 

i

~a ~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V~~~~ 
:~iT~:~1:V:~



— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

N! k a
3Pr(I — ‘ ,.. .,I =i~) = n1 1 k V~ IC 

.1 N i 1  ‘j
i 1  ~

The Dirichlet compound multinomial results (as the name indicates) by niacing

a Dirichiet distribution on the parameters of a multinomial distribution.

It is clear that the distribution of (T ,J ,K) , ‘i.ven by (3.2) , is Dirichlet

cannound multinomial with parameters ~
T
~,a(-~,x) , cx( {x}) ~a (x , øo) .

The one-sided prediction interval nroblem is find x~ such that R(x,1) = y.

This equation can be rewritten as
N
~ Pr{exactly k of the N future Y observations > x,.~} = y.

kq

Now, for the ‘no data ’ problem,

Pr{exactly k of ~‘1 future observations > x}  = P{K=k} .

Since the distribution of (I,J,K) is flirichlet comnound multinonial, the

distribution of ~( has what is called a beta compound binomial distribution

or a Pólya-Eggenberger distribution (see Johnson and Kotz , 1969, p. 229).

It follows that

Pr{X=k} = 
~~

) a(~ = ,x] I~
T

a(x ,~~)~~~~/a (P)
f ! 1

.

Therefore, the solution is sought for the following eouation in x:

. N IN— U rl,1 nfl
~ 

(
~
) a(-co ,xl - V 

~a(X ao) /cz(P) = y .  (3.4)
k q

The monotonicity of R(x) from the definition ensures that , for 0 < < 1,

there is either a solution x0 to equation (3.4) or there exists an x1 such

that P(x1) < y � R(x~). If the flirichiet parameter a is a nonatomic measure,

so that a(-co ,t) is a continuous function in t , then the left-hand-side of

(3.4) is continuous. Further, since R(x) ranges from 1 to 0, in such a case

a solution exists (it may not be unique). In the second case , if P (x1) < y �

~ 

1~~~~~~~~ :V~~~~~~~~~~ V~~~~~~~~~~~ V ~~~~~~~~
_ 

~~~~~~~~~~~~ _____-



R(x~) . the interva l [x1 oo) is a nredictior~ interval for at least ci

of N future observations with prediction coefficient at least y.

The solution to the nrediction interval ‘lata” nroblem is now considered.

Thus. sunpose that an initial samnle ~~~~~~~ is observed from a Dirichiet

process. The develoçnent for the data problem is imediate in that the

Dirichiet process with parameter ~ is merely replaced by the Dirichiet pro-

cess with updated parameter ci ’ = a + and one rroceeds as in the ‘no
i=l i

data” problem. Thus, (T,J,K) given (X1,...,X,,) has a Dirichlet comnound

multinomial distribution with narameters N,a’ (-ao ,x) ,a’((x)) ,a’ (x,oc’). The

prediction interval is obtained upon the solution of

~ 
(
~) a’(-~ x)  a ’(~~.)~~~~/ci ’ (R)~~~~ = y. (3.5)

k=q

Here, a ’ is not nonatomic so either a solution x0 exists or there exists an

x1 such that 1x1, ø )  is a prediction interva l for at least q of ~~ future

observations with nrediction coefficient at least y .

There are two snecial cases of note. !‘lhen q=’J , one obtains the one-sided

upper prediction interval for all N future observations~ when q=l , the interval

is the one-sided upper prediction interval For the largest of N future obser-

vat ions.

4. INVESTIGATION OF T~-ff2 COV~ AGE PROPERTY ‘~OPS A DIRIC~LET SANPLE

The coverage property for a continuous distribution function P0 with

a random samnle from F0 is as follows:

Couvca~je~ P kopeMif : If Y (1) �...� denote the order statistics of the

sample y
1~ . ,Y~ from F0, then, for integers n and q such that 0 � p < ci ~ N+l ,

the distribution of F0 (Y (0) )~F0 (Y (~) ) has the same distribution as

where, by convention FØ (Y
(0)) 0  and F0(Y~~ 1) )”1. — 

•~~~~~~~~~~ V~~~~~~~~~ V~~~~~~~1 • V~
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Pligner and Wolfe (1976) have extended the coverage property from the

case of a continuous distribution function to that of the empirical distri-

bution function F front the initial sample X1,. ..,X~, also from F0. In

particular, they prove that the distribution of Fn(Y(q))~Fn
(Y (p)) has the

sane distribution as F
fl

(Y (q~p))~
A question of interest is whether the coverage property holds for

~~~ a sample from a Dirichlet V)rocess with parameter ci . In particular ,

is it true that ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ has the same distribution

as ci(~OO~Y(q...p)i/a(R)? If the coverage property were to hold, it would aid

in constructing two-sided prediction intervals directly from one-sided inter-

vals in that if (Y (q~p)~ =) were a one-sided b O y percent prediction interval,

then (Y (p)~Y(q)] would also be a lOO~ percent prediction interval for fixed

integers p and q with 0 � p < q � N+1. In that event, one could employ the

techniques derived in the preceding section.

However, the coverage property does not hold for samples from a Dirichlet

process . It sufficies to demonstrate this for the case N = 2 , p = 1, and

q = 2 by comparison of the mean of a( -co~Y (2) i-a(-u ~ Y (1)
] C2(Y

(fl~
Y(2)] and

the mean of ci(-=~Y(1)]. If the coverage property were true, then, in par-

ticular, Ea (_0~Y(1)] = Ec~(Y(1)~Y(2)] or , equivalently,

2Ea(-~~Y (1) 1 = Ea(-~~Y(2) 1. (4.1)

Theorem 2 below, which gives the distribution of the rth order statistic of

a sample of size from a Dirichiet process , will be used to show that

equality(4.l) doe4 no.t hold. Since the Dirichiet process places all its mass

on discrete distribution functions (see, for example , Ferguson (1973),

Blackwell (1973), and Berk and Savage (1977)), there can be ties in the

samples from Dirichlet processes. Nonetheless, one can order the random

- ~~—‘V - V 
- 

V
V. — - V - ~~~~ V~~ V V V V ~~~_V •._~ V~~ V~’ ~~~~ ~~ V V - — -

—-
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variables from a sample of size n from ~t ‘)iric~-1et -‘rocess and deriw thc

distribution of the ordr’- statistics .

Theokej n 2: For 1 � r � n, the distribution Fr of the r
th or~1er statistic

of a sample of size n from a Dirichlet process with parameter a is given by

= 
~ 

(
~
) ~~~~~~~~~~~~~~~~~~~~~~~ (4.2)

i=r

Pnoo~: Suppose P is a known distribution function with X1,.. ~~~

the random sampJe fran F. Then the distribution of X(r)~ the ~th order

statistic is:

PT(X( )  
< x~F) = 

~ 
(
~) F(x)1[l-F(xPT1’. (4.3)

izr

If , in fact, F is a random distribution function from a Dirichlet nrocess,

then by definition, for x fixed, F(x) has a beta distribution with parameters

a(-ac~,X] and a(X ,00). Then integrating both sides of (4.3) over F, one obtains

F ( x) = P1•{X(r) ~ x} = 
i~r 

~~ ~ 
F (x)’[l-F(x) 

~~~~~~~

~ (~)cz(~.o,x)
[ u (x,~)

t n h /a (Q)~~
.l .

i—r

The final line above follows by the moments of the beta (Dirichiet)

distribution. I
It is a simple matter to also derive the joint distribution of the

rth and th order statistics (r < s).

The.oMm 3: If X1,...,X~ is a sample of size n fran a Dirichiet process

with parameter a , the joint distribution of the r
th order statistic X(r)

and the 5th order statistic X(5)~ for 1 � r < s � n, is given by

.~ -. r —~~ V

- 
V~~ ~~‘ ~~~ ~~~ ‘ ~~~~~~~~~~~~~~~~~~~~~ V 

~~ -~~ 
V 

~~ * ~~
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fl f l ’  I ~ 1
F~ 5 (x ,y) = Z

i=r j max(0,s-i)
(4.4)

.a(y,~)
1
~~
’
~~

1/a(R)~~
1. (xcy)

P 4oo6: Given the distribution function F, the joint distribution of

X(r) and X(s) is, for x <

PT
~
{X(r) � x , X~~~ � y} =

V (4 . 5)
n n-i I n 1 . . n-i-j

~i,j,n-i-~J F(x)
1[F(y)-F(x)]3[l-F(y)]

i=r j =max (0 ,s-i)

Integrating both sides of (4.5) with resnect to F, using the definition

of the Dirichlet process for the partition (-o ,x],(x,y],(y,o’), and employing

the moments of the irichiet distribution completes the p roof . I I
By an application of Theorem 2, the distributions, of the first and

second order statistics , for the case N=2 , are

F1(x) = t {2u (-~~,x1u (x ,~ ))  +

F2 (x) = a(_o,,x]
[2]

/a(R)
[2

.

V It suffices to consider the special case of cz(-°o,x] = x for x [0 , 1] with

ct([O,l]) = 1 and c2(R-[0 ,1]) = 0. Then,

I

V V 1
Ea(- co~X (1) ] = E(X (1)) J

~ 
xdF 1(x)

1 1
= f (l-F1(x))dx = f {l-x(l-x) -½x (x+l) }dx 5/12.

0 0

In a similar fashion, -

V 

Ea(~~ X(2)] = E(X (2)) = f xdF2 (x)

1 1
— f (l-F2(x))dx = f (1 - ½x(x+l)}dx = 7/12.

0 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V ~~~~~~ 

~~~~
_

~~~~i:V:~~~ 

~~~~~~~~~~~ 

J
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Thus equation (4.1) does not hold for this snecial case. Therfore, the

coverage nroperty is not val id for a sample fran a Dirichlet nrocess.

5. 11~)-SIDED P”FJ)ICrION INTERVALS WITh Ti lE ~IRICHLET PRIOR

The problem of generating two-sided lOOy percent prediction inter-

vals of the form (x ,y) , for x < y ,  to contain at least a of N future ob-

servations from a Dirichiet nrocess, requires more notational development.

Let 7, J, K , L , and ‘~~ (all dep endent on x and/or y with the notational

V dependences supnresse~ be random variables for the number of Y1,.. .

that are less than x , equal to x, between x and y ,  equal to y, and greater

than y, respectively . (Note that I, J, and ~ have been redefined and should

not be confused with their use in Section 3.)

Thw~~rn 4 : If X1,. .., X~ is a sample from a Dirichiet process P (say) with

parameter a and Y1,. ~~ is a second sample from the conditional process

P given X1, . . ,X~, then for x and y with x < y ,

Pr((I ,J,K,L,i1) = (i,j,k,t,m)IX1,...~X~}

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (5.1)

~~
I (y’,=)~~

1
/a ’ (~V) 1N1

where a’ = a +

P’wo~: The conditional probability distribution of (I,J,K,L,N) given

and F is obtained by a multinoniial argument. Integration over F

and application of the mean of the Dirichlet distribution for (F(x),

F (x) - F (x), F (y )  - F (x), P(y) - F (y), 1 - F (y)) yields (5.1) . I I
The distribution of (I ,J,K,L,M) given X1,. . . ,X~ is Dirichiet compound

inultinomial with parameters N , e*’(-oo,x), cz ’({xfl, a ’(x ,y) ci ’Uy}), u’(y,—).

ILJ~ - r~~~~~ -~~~~~~~~ ~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V
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Note that i f n -O a n d x - y s o th at K -Oa n dJ and L are combined,
V 

Theorem 1 is obtained as a special case .

For x c y, define

R(x ,y) = Pr{at least q of the Y’s are in the interval (x,y) }

N
- ~ Pr{ exactly p of the Y ‘s are in the interval (x y) }.

p-q

Note that for x fixed, P.(x ,y) is increasing in y and that , for y fixed
V R(x ,y) is decreasing in x. The prediction interval problem is to find

(x0,y0) such that R(x0,y0) = y. However, fran Theorem 4 and the fact

that the marginals of the Dirichlet compound nniltinanial are beta ccmi~ound
binomial, K has a beta compound binomial with parameters N , a ’ (x ,y),

a ’(R -(x ,y)). Thus,

R(x ,y) ~ 
Pr{K = p} — ~ (

~) a ’(x ,y) a ’ (R-(x ,y) )~~~~
1/a ’ (R) 1

~~ . (5.2)
p-cl p-q

• A trial-by-error solution to find (x0,y0) such that R(x0,y0) - ‘r is one way

of proceeding . The solution (if it exists) need not be unique and in fact

an uncountably infinite nunber of pairs is possible . Note that as x or y

is shifted, a ’ (x,y) may change, so that a computer in many cases is an in-

valuable aid in the determination of such prediction intervals for even small
r - v~1ues of n and N.
I

• It is clear that one could easily construct prediction intervals of the

form [x ,yl , or (x ,yl instead of (x ,y) . For example, for the interval [x ,y] ,

one employs the fact that J + K + L has a beta compound binomial distribution

with parameters N , a ’[x ,y] , ct ’ (R-[x ,yl) and proceeds as above .

In the event that a(R) is small, there may be no solution to R(x ,y) —
In that case, one could find x1 and y1 such that R(x1,y1) < y s T~(x ,y ) .  Then

[x1 ,y1’ is a prediction interval for at least a of N future observations with

prediction coefficient at least v .
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6. AN EXAMPLE

In this section, two-sided non-Bayesian nonparametric and Bayesian non-

parametric (Dirichlet) prediction intervals for at least q of N future obser-

vatio ns are illustrated using a numerica l example originally introduced by

V 
Hahn (l9lOa) . He gives the following data , on failure times (in months) of

a new type of machine, recorded for five prototypes: 51.4, 49.5, 48.7 , 49.3 ,

51.6. To illustrate our procedure we suppose that there is prior evidence

(from --ast experience relating to a similar machine) which suggests that the

underlying life distribution can be approximated by a normal distribution with

a mean of 50 and a standard deviation of 1.25. Thus , to apply the two-sided

Bayesian nonparametric prediction interval introduced in Section 5, we will

set (a(-co,xl/a(R)} = *((x-S0}/l.25) where e() is the standard normal cumila-

tive distribution function . We must also specify a value for cz(R). This speci-

fication hinges on the degree of confidence or belief that one invests in this

choice for the measure a. For this case, suppose we set cz(R) = 5. Roughly

speaking , this corresponds to a prior sample size of 5 observations . Since

n also equals 5 here, the prior and the initial sample of size 5 are equally

weighted in their c’,ntribution to the prediction interval . Rather than to

construct the dif~erent prediction intervals (which may not be unique) for

a fixed prediction coefficient, for simplification we let the prediction

intervals (X(1)PX(5)) and 1X(1)~X(5)1 be chosen and the prediction coefficients

computed. (Note that any order statistics could have been chosen for the sake

of comparison of Dirichiet and nonparametric prediction intervals, but that

unlike the Dirichlet intervals, the nonparametric ones demand that only order

statistics of the initial sample serve as endpoints.) 

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ~~~~~~~ - ~ • V 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V 

VVV 4~~~~~~~~~~~~~~~.
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Consider the two-sided prediction interval for a single future obser-

vation (N - 1). The non-Bayesian nonparametric prediction coefficient for

the interval (X(1)~X(5)) — (48.7,51.6) based on the n = 5 initial observations

is as follows [see Wilks (1942) or Danziger and Davis (1964) for details]:

Pr{exactly N0 of N future observations fall in

(6 .1)
— n(n-1) (N-N 0+l)’!! (N0+n-2) !/ {N 0~ (N+n) ! } .

Substituting into (6.1) with n S and N = N0 = 1 yields the value 2/3 for

the prediction coefficient. Contrast this with the Dirichiet prediction

coefficient , for the same interval , as given by (5.2) :

R(X (1yX (5) ) = RI a ’(X X ) ~
11/a ’ (R)~

11

= {5(.7505)+3 }/lO — .675.

However , if the interval is expanded to include the endpoints , the non-

parametric prediction coefficient does not change , but the discreteness

of the Dirichlet process causes an increase in the Dirichiet coefficient to

= {5(.Th05)+S}/lO = .875.

To illustrate the crucial nature of the choice of a(R), suppose

~ :. a (R) • 20. Then the Dirichlet prediction coefficient of (48.7 ,51.6) is

(20(.7505)+3)/25 = .720. The limit as c*(R) tends to infinity can also

be easily computed. As a (R) increases , greater confidence is placed on

the prior at the expense of the initial sample. In this case that is re-

flected by the result that in the limit the prediction coefficient for

(48.7 ,51.6) (and also for [48.7 ,51.61) is .7505 . This value is of course

Pr(48.7 c X < 51.6) , where X is normal with mean 50 and standard deviation

1.25.

Note that the nonparametric and Dirichlet prediction coefficients also

do not agree as a (R) tends to zero (corresp onding to less and less confidence

in the prior). In our example, the nonparametric coefficient for (48.7,51.6)

remains 2/3, whereas the Dirichiet coefficient approaches .6 as cx(R) tends

to zero .

~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~ V 1 ~~ Y~~~~~:1~~~L1~ 
‘

~~~~~~~~~~~J~~~V ’ :  
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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